Space-Time Discretization of Series Expansion Methods for the Boltzmann Transport Equation
نویسنده
چکیده
The approximate solution of the Boltzmann transport equation via Galerkin-type series expansion methods leads to a system of first order differential equations in space and time for the expansion coefficients. This system is extremely stiff close to the fluid dynamical regime (for small Knudsen numbers), and exhibits a mildly dispersive behavior, due to the acceleration of waves by the external force (the electric field). In this paper a class of difference methods is presented and analyzed which represent a generalization of the well-known Scharfetter–Gummel exponential fitting approach for the drift-diffusion equations. It is shown that, by using appropriate operator splitting methods for the time discretization, one obtains stability properties which are only mildly dependent on the Knudsen number and essentially independent of the size of the electric field.
منابع مشابه
External and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method
The lattice Boltzmann method (LBM) has recently become an alternative and promising computational fluid dynamics approach for simulating complex fluid flows. Despite its enormous success in many practical applications, the standard LBM is restricted to the lattice uniformity in the physical space. This is the main drawback of the standard LBM for flow problems with complex geometry. Several app...
متن کاملThe Quantum Statistical Mechanical Theory of Transport Processes
A new derivation of the quantum Boltzmann transport equation for the Fermion system from the quantum time evolution equation for the wigner distribution function is presented. The method exhibits the origin of the time - irreversibility of the Boltzmann equation. In the present work, the spin dependent and indistinguishibility of particles are also considered.
متن کاملDerivation of the Lattice Vehicular Model from the Boltzmann Transport Equation
In this paper, the lattice vehicular model, which is in the form the lattice Boltzmann equation is directly derived from the Boltzmann equation. It is shown that the lattice Boltzmann equation is a special discretized form of the Boltzmann equation. A 3-bit approximation, which describe uncongested traffic flow, for the discretization of the Boltzmann equation in both time and phase space is di...
متن کاملDiscretization of the Multiscale SemiconductorBoltzmann Equation by DiffusiveRelaxation Schemes
In this paper we derive diffusive relaxation schemes for the linear semiconductor Boltzmann equation that work in both the kinetic and diffusive regimes. Similar to our earlier approach for multiscale transport equations, we use the evenand oddparity formulation of the kinetic equation, and then reformulate it into the diffusive relaxation system (DRS). In order to handle the implicit anisotrop...
متن کاملAn algebraic calculation method for describing time-dependent processes in electrochemistry – Expansion of existing procedures
In this paper an alternative model allowing the extension of the Debye-Hückel Theory (DHT) considering time dependence explicitly is presented. From the Electro-Quasistatic approach (EQS) introduced in earlier studies time dependent potentials are suitable to describe several phenomena especially conducting media as well as the behaviour of charged particles (ions) in electrolytes. This leads t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 38 شماره
صفحات -
تاریخ انتشار 2000